Building IP: CELG/Lundbeck Patent Appl "CRYSTALLINE (R)-5-CARBAMOYLPYRIDIN-3-YL-2-... | BMY Message Board Posts


Bristol-Myers Squibb Co.

  BMY website

BMY   /  Message Board  /  Read Message

 

 






Keyword
Subject
Between
and
Rec'd By
Authored By
Minimum Recs
  
Previous Message  Next Message    Post Message    Post a Reply return to message boardtop of board
Msg  12064 of 12418  at  12/1/2023 6:35:00 PM  by

JBWIN

The following message was updated on 12/1/2023 6:35:15 PM.

Building IP: CELG/Lundbeck Patent Appl "CRYSTALLINE (R)-5-CARBAMOYLPYRIDIN-3-YL-2-...

 

CRYSTALLINE (R)-5-CARBAMOYLPYRIDIN-3-YL-2-METHYL-4-(3-(TRIFLUOROMETHOXY)BENZYL)PIPERAZINE-1-CARBOXYLATE, COMPOSITIONS AND METHODS OF USE THEREOF

DOCUMENT ID

US 20230382861 A1

DATE PUBLISHED

2023-11-30

INVENTOR INFORMATION

NAME

CITY

STATE

ZIP CODE

COUNTRY

Huang; Lianfeng
Basking Ridge
NJ
N/A
US
Tsou; Nancy
Edison
NJ
N/A
US
White; Nicole Suzanne
San Diego
CA
N/A
US
Xu; Jun
Suzhou
N/A
N/A
CN
Zhang; Qun
Suzhou
N/A
N/A
CN

APPLICANT INFORMATION

NAME
Celgene Corporation
Lundbeck La Jolla Research Center, Inc.
CITY
Summit
San Diego
STATE
NJ
CA
ZIP CODE
N/A
N/A
COUNTRY
US
US
AUTHORITY
N/A
N/A
TYPE
assignee
assignee

APPLICATION NO

18/143765

DATE FILED

2023-05-05

DOMESTIC PRIORITY (CONTINUITY DATA)

parent US continuation 17338182 20210603 parent-grant-document US 11680046 child US 18143765

parent US division 16569578 20190912 parent-grant-document US 11053199 child US 17338182

us-provisional-application US 62731014 20180913

US CLASS CURRENT:

1/1

CPC CURRENT

TYPE

CPC

DATE

CPCI
2013-01-01
CPCI
2018-01-01
CPCA
2013-01-01

Abstract

Provided herein are crystalline forms of (R)-5-carbamoylpyridin-3-yl-2-methyl-4-(3-(trifluoromethoxy)benzyl)piperazine-1-carboxylate. Pharmaceutical compositions comprising crystalline forms of (R)-5-carbamoylpyridin-3-yl-2-methyl-4-(3-(trifluoromethoxy)benzyl)piperazine-1-carboxylate are also disclosed.

Background/Summary

CROSS-REFERENCE

[0001] This application claims benefit of U.S. Provisional Application No. 62/731,014 filed on Sep. 13, 2018, which is herein incorporated by reference in its entirety.

FIELD

[0002] Provided herein are solid forms of (R)-5-carbamoylpyridin-3-yl-2-methyl-4-(3-(trifluoromethoxy)benzyl)piperazine-1-carboxylate. Pharmaceutical compositions comprising such solid forms and methods of use for treating, preventing, and managing various disorders are also provided herein.

BACKGROUND

[0003] Many compounds can exist in different crystal forms, or polymorphs, which exhibit different physical, chemical, and spectroscopic properties. For example, certain polymorphs of a compound may be more readily soluble in particular solvents, may flow more readily, or may compress more easily than others. See, e.g., P. DiMartino, et al., J. Thermal Anal., 48:447-458 (1997). In the case of drugs, certain solid forms may be more bioavailable than others, while others may be more stable under certain manufacturing, storage, and biological conditions.

[0004] Polymorphic forms of a compound are known in the pharmaceutical arts to affect, for example, the solubility, stability, flowability, fractability, and compressibility of the compound, as well as the safety and efficacy of drug products comprising it. See, e.g., Knapman, K. Modern Drug Discoveries, 2000, 53. Therefore, the discovery of new polymorphs of a drug can provide a variety of advantages.

[0005] The identification and selection of a solid form of a pharmaceutical compound are complex, given that a change in solid form may affect a variety of physical and chemical properties, which may provide benefits or drawbacks in processing, formulation, stability, bioavailability, storage, handling (e.g., shipping), among other important pharmaceutical characteristics. Useful pharmaceutical solids include crystalline solids and amorphous solids, depending on the product and its mode of administration. Amorphous solids are characterized by a lack of long-range structural order, whereas crystalline solids are characterized by structural periodicity. The desired class of pharmaceutical solid depends upon the specific application; amorphous solids are sometimes selected on the basis of, e.g., an enhanced dissolution profile, while crystalline solids may be desirable for properties such as, e.g., physical or chemical stability.

[0006] The importance of discovering polymorphs was underscored by the case of Ritonavir™, an HIV protease inhibitor that was formulated as soft gelatin capsules. About two years after the product was launched, the unanticipated precipitation of a new, less soluble polymorph in the formulation necessitated the withdrawal of the product from the market until a more consistent formulation could be developed (see S. R. Chemburkar et al., Org. Process Res. Dev., (2000) 4:413-417).

[0007] Notably, it is not possible to predict a priori if crystalline forms of a compound even exist, let alone how to successfully prepare them (see, e.g., Braga and Grepioni, 2005, “Making crystals from crystals: a green route to crystal engineering and polymorphism,” Chem. Commun. :3635-3645 (with respect to crystal engineering, if instructions are not very precise and/or if other external factors affect the process, the result can be unpredictable); Jones et al., 2006, Pharmaceutical Cocrystals: An Emerging Approach to Physical Property Enhancement,” MRS Bulletin 31:875-879 (At present it is not generally possible to computationally predict the number of observable polymorphs of even the simplest molecules); Price, 2004, “The computational prediction of pharmaceutical crystal structures and polymorphism,” Advanced Drug Delivery Reviews 56:301-319 (“Price”); and Bernstein, 2004, “Crystal Structure Prediction and Polymorphism,” ACA Transactions 39:14-23 (a great deal still needs to be learned and done before one can state with any degree of confidence the ability to predict a crystal structure, much less polymorphic forms)).

[0008] The variety of possible solid forms creates potential diversity in physical and chemical properties for a given pharmaceutical compound. The discovery and selection of solid forms are of great importance in the development of an effective, stable and marketable pharmaceutical product.

[0009] (R)-5-Carbamoylpyridin-3-yl-2-methyl-4-(3-(trifluoromethoxy)benzyl)piperazine-1-carboxylate is a compound which is a dual MAGL and FAAH inhibitor, and may be used in treating various disorders.

[0010] The synthesis of (R)-5-carbamoylpyridin-3-yl-2-methyl-4-(3-(trifluoromethoxy)benzyl)piperazine-1-carboxylate has been described in PCT/US2018/022049 filed Mar. 12, 2018.

[0011] Novel crystalline forms of (R)-5-carbamoylpyridin-3-yl-2-methyl-4-(3-(trifluoromethoxy)benzyl)piperazine-1-carboxylate are described herein. New polymorphic forms of (R)-5-carbamoylpyridin-3-yl-2-methyl-4-(3-(trifluoromethoxy)benzyl)piperazine-1-carboxylate can further the development of formulations for the treatment of various illnesses, and may yield numerous formulation, manufacturing and therapeutic benefits.

SUMMARY

[0012] Provided herein are crystalline forms of (R)-5-carbamoylpyridin-3-yl-2-methyl-4-(3-(trifluoromethoxy)benzyl)piperazine-1-carboxylate. Also provided herein are pharmaceutical compositions comprising crystalline forms of (R)-5-carbamoylpyridin-3-yl-2-methyl-4-(3-(trifluoromethoxy)benzyl)piperazine-1-carboxylate. Further provided herein are methods of treating or preventing a variety of disease and disorders, which comprise administering to a patient a therapeutically effective amount of a crystalline form of (R)-5-carbamoylpyridin-3-yl-2-methyl-4-(3-(trifluoromethoxy)benzyl)piperazine-1-carboxylate.

[0013] Also provided herein are methods of preparing, isolating, and characterizing crystalline (R)-5-carbamoylpyridin-3-yl-2-methyl-4-(3-(trifluoromethoxy)benzyl)piperazine-1-carboxylate.

 


     e-mail to a friend      printer-friendly     add to library      
|  
Recs: 0  
   Views: 0 []
Previous Message  Next Message    Post Message    Post a Reply return to message boardtop of board




Financial Market Data provided by
.
Loading...