|
|
![]() |
![]() ![]() |
![]() |
|
||
![]() |
![]() |
Building IP: JUNO Patent Appl "METHODS FOR ISOLATING, CULTURING, AND GENETICALLY...METHODS FOR ISOLATING, CULTURING, AND GENETICALLY ENGINEERING IMMUNE CELL POPULATIONS FOR ADOPTIVE THERAPYDOCUMENT IDUS 20230090176 A1 DATE PUBLISHED2023-03-23 INVENTOR INFORMATION NAMECITYSTATEZIP CODECOUNTRYRAMSBORG; Chris Seattle WA N/A US BONYHADI; Mark L. Sammamish WA N/A US CHAN; Calvin Seattle WA N/A US BEAUCHESNE; Pascal Seattle WA N/A US APPLICANT INFORMATION NAME Juno Therapeutics, Inc. CITY Seattle STATE WA ZIP CODE N/A COUNTRY US AUTHORITY N/A TYPE assignee ASSIGNEE INFORMATION NAME Juno Therapeutics, Inc. CITY Seattle STATE WA ZIP CODE N/A COUNTRY US TYPE CODE 02 APPLICATION NO17/850875 DATE FILED2022-06-27 DOMESTIC PRIORITY (CONTINUITY DATA)parent US continuation 15305337 20170403 parent-grant-document US 11400115 WO continuation PCT/US2015/027401 20150423 child US 17850875 us-provisional-application US 61983415 20140423 AbstractThe present disclosure relates in some aspects to methods, cells, and compositions for preparing cells and compositions for genetic engineering and cell therapy. Provided in some embodiments are streamlined cell preparation methods, e.g., for isolation, processing, incubation, and genetic engineering of cells and populations of cells. Also provided are cells and compositions produced by the methods and methods of their use. The cells can include immune cells, such as T cells, and generally include a plurality of isolated T cell populations or types. In some aspects, the methods arc capable of preparing of a plurality of different cell populations for adoptive therapy using fewer steps and/or resources and/or reduced handling compared with other methods. Background/SummaryCROSS-REFERENCE TO RELATED APPLICATIONS [0001] This application claims priority from U.S. provisional application Ser. No. 61/983,415, filed Apr. 23, 2014, the contents of which are incorporated by reference in their entirety. INCORPORATION BY REFERENCE OF SEQUENCE LISTING [0002] The present application is being filed along with a Sequence Listing in electronic format. The Sequence Listing is provided as a file entitled 735042000240seqlist.txt, created Apr. 22, 2015, which is 13 kilobytes in size. The information in the electronic format of the Sequence Listing is incorporated by reference in its entirety. FIELD [0003] The present disclosure relates in some aspects to methods, cells, and compositions for preparing cells, and compositions for genetic engineering and cell therapy. Provided in some embodiments are streamlined cell preparation methods, e.g., for isolation, processing, incubation, and genetic engineering of cells and populations of cells. Also provided are cells and compositions produced by the methods and methods of their use. The cells can include immune cells, such as T cells, and generally include a plurality of isolated T cell populations or T cell sub-types. In some aspects, the methods are capable of preparing of a plurality of different cell populations for adoptive therapy using fewer steps and/or resources and/or reduced handling compared with other methods. BACKGROUND [0004] Various methods are available for preparing cells for therapeutic use. For example, methods are available for isolating, processing, and engineering cells, including T cells and other immune cells. Methods are available to isolate such cells and to express genetically engineered antigen receptors, such as high affinity T cell receptors (TCRs) and chimeric antigen receptors (CARs). Methods are available to adoptively transfer such cells into subjects. Improved methods are needed for the preparation (e.g., isolation, processing, culturing, and engineering) of cells for use in cell therapy. In particular, methods are needed for the preparation and engineering of cells, e.g., a plurality of isolated cell types or sub-types, with improved efficiency, safety, variability, and conservation of resources. Provided are methods, cells, compositions, kits, and systems that meet such needs. SUMMARY [0005] Provided are methods for the preparation and engineering of cells and populations of cells and cells and compositions produced by the methods. In some embodiments, the cells can be used for immunotherapy, such as in connection with adoptive immunotherapy methods. In some aspects, the provided methods include isolation, selection or enrichment of CD4+ and CD8+ cells, or sub-populations thereof, from the same starting sample, such as a single sample, for example a single apheresis sample, leukapheresis sample or a sample containing peripheral blood mononuclear cells (PBMCs). In some embodiments, the methods include selection or enrichment of at least two populations of cells, such as a CD4+ cell population and a CD8+ population, in a single processing stream in which no negative fraction sample is discarded from a first selection or enrichment of one of the CD4+ or CD8+ in the process, prior to performing the second selection for the other of the CD4+ or CD8+ cells. In some embodiments, the first and second selection can occur simultaneously or sequentially. [0006] In some aspects, the selection, enrichment and/or isolation of both populations of cells, such as CD4+ and CD8+ cells, is performed simultaneously, such as in the same vessel or using the same apparatus, or sequentially as part of a system or apparatus in which vessels, e.g. columns, chambers, used in performing the first and second selection, are operably connected. In some embodiments, the simultaneous and/or sequential enrichments or selections can occur as a single process stream without handling of any of the positive or negative fractions prepared as part of the first and/or second selection or enrichment. In some aspects, the isolation, culture, and/or engineering of the different populations is carried out from the same starting composition or material, such as from the same sample. [0007] In some embodiments, the methods include performing a first selection by enriching from a sample containing primary human T cells one of CD4+ or CD8+ cells to generate a first selected population and a non-selected population, and from the non-selected population performing a second selection by enriching for the other of CD4+ cell or CD8+ cell, wherein the method produces a composition of cells containing cells enriched for CD4+ cells and cells enriched for CD8+. [0008] In some embodiments, the second selection is carried out by enriching for the other of the T cell subtypes from the non-selected population generated by the first selection. Thus, in some embodiments, the provided methods differ from other selection methods in that the negative fraction from a first selection is not discarded but rather is used as the basis for a further selection to enrich for another cell type. In general, where the T cell subset enriched for in the first selection is a CD4+ subset (or where the first selection enriches for CD4+ cells), it will follow that the first selection is designed such that it does not enrich for cells of the other subtype to be enriched for in the second selection. For example, in some embodiments, the first selection enriches for CD4+ cells and does not enrich for CD8+ cells, and the second selection enriches for CD8+ cells from the negative fraction recovered from the first selection. Likewise, in general, where the T cell subset enriched for in the first selection is a CD8+ subset (or where the first selection enriches for CD830 cells), it will follow that the first selection is designed such that it does not enrich for cells of the other subtype to be enriched for in the second selection. For example, in some embodiments, the first selection enriches for CD8+ cells and does not enrich for CD4+ cells, and the second selection enriches for CD4+ cells from the negative fraction recovered from the first selection. [0009] In some embodiments, the methods further involve third, fourth, and so-forth further selections, which may enrich for cells from the selected and/or the non-selected populations from any previous selection step. For example, in some embodiments, cells from either the selected population or the non-selected population from a given step (e.g., the second selection step, are further enriched. For example, in some embodiments, selected CD8+ cells are further enriched for a subtype of CD8+ cells, such as resting cells or central memory cells. [0010] In some embodiments, provided is a method for producing genetically engineered T cells, comprising (a) providing a culture-initiation composition, said composition produced by performing a first selection in a closed system, said first selection comprising enriching for one of CD4.sup.+ cells and CD8+ cells from a sample containing primary human T cells, thereby generating a first selected population and a non-selected population, and performing a second selection in the closed system, said second selection comprising enriching for the other of CD4+ cells and CD8 + cells from the non-selected population, thereby generating a second selected population; (b) incubating a culture-initiating composition, which comprises cells of the first selected population and cells of the second selected population, in a culture vessel under stimulating conditions, thereby generating stimulated cells; and (d) introducing a genetically engineered antigen receptor into stimulated cells generated in (b), wherein the method thereby generates an output composition comprising CD4.sup.+ T cells and CD8.sup.+ T cells expressing the genetically engineered antigen receptor. [0011] Also provided, in some embodiments, are methods that include a simultaneous enrichment or selection of a first and second population of cells, such as a CD4+ and CD8+ cell population. In some embodiments, the method includes contacting cells of a sample containing primary human T cells with a first immunoaffinity reagent that specifically binds to CD4 and a second immunoaffinity reagent that specifically binds to CD8 in an incubation composition, under conditions whereby the immunoaffinity reagents specifically bind to CD4 and CD8 molecules, respectively, on the surface of cells in the sample, and recovering cells bound to the first and/or the second immunoaffinity reagent, thereby generating an enriched composition comprising CD4+ cells and CD8+ cells. In some embodiment, the methods are performed to include in the incubation composition a concentration of the first and/or second immunoaffinity reagent that is at a sub-optimal yield concentration so that the enriched composition contains less than 70%, less than 60%, less than 50%, less than 40%, less than 30%, less than 20% or less of the total CD4+ cells in the incubation composition or less than 70% less than 60%, less than 50%, less than 40%, less than 30%, less than 20% or less of the CD8+ cells in the incubation composition. [0012] In some embodiments, provided is a method for enriching CD4+ and CD8+ T cells, comprising providing an enriched composition of CD4+ and CD9+ T cells, said enriched composition produced by contacting cells of a sample containing primary human T cells with a first immunoaffinity reagent that specifically binds to CD4 and a second immunoaffinity reagent that specifically binds to CD8 in an incubation composition, under conditions whereby the immunoaffinity reagents specifically bind to CD4 and CD8 molecules, respectively, on the surface of cells in the sample; and recovering cells bound to the first and/or the second immunoaffinity reagent, thereby generating an enriched composition comprising CD4+ cells and CD8+ cells at a culture-initiating ratio, wherein: the first and/or second immunoaffinity reagent are present in the incubation composition at a sub-optimal yield concentration, whereby the enriched composition contains less than 70% of the total CD4+ cells in the incubation composition and/or less than 70% of the CD8+ cells in the incubation composition, thereby producing a composition enriched for CD4+ and CD8+ T cells. [0013] In some embodiments of any of such provided embodiments, the methods are performed by immunoaffinity-based selection, such as by contacting cells with an antibody that specifically binds a cell surface marker, such as CD4, CD8 or other cell surface marker, such as expressed on naïve, resting or central memory T cells. In some embodiments, the solid support is a sphere, such as a bead, such as a microbead or nanobead. In some embodiments, the bead can be a magnetic bead. In some embodiments, the solid support can be a column or other vessel to effect column chromatography. [0014] In some embodiments, the antibody contains one or more binding partners capable of forming a reversible bond with a binding reagent immobilized on the solid surface, such as a sphere or chromatography matrix, wherein the antibody is reversibly mobilized to the solid surface. In some embodiments, cells expressing a cell surface marker bound by the antibody on said solid surface are capable of being recovered from the matrix by disruption of the reversible binding between the binding reagent and binding partner. In some embodiments, the binding reagent is streptavidin or is a streptavidin analog or mutant, such as a streptavidin, analog or mutant set forth in any of SEQ ID NOS:11-16 or a sequence of amino acids that exhibits at least 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or more sequence identity to the sequence set forth in any of SEQ ID NOS: 11-16 and retains binding to a binding partner, such as biotin or peptide. In some embodiments, the binding partner is biotin, a biotin analog or a peptide capable of binding to the binding reagent. In some embodiments, the binding partner is or contains a peptide capable of binding the binding reagent, such as a streptavidin binding peptide, such as a peptide containing the sequence set forth in any of SEQ ID NOS: 1-10. In some embodiments, the methods include after contacting cells in the sample to the solid support containing the antibody immobilized thereon as part of the first and/or second selection, applying a competition reagent to disrupt the bond between the binding partner and binding reagent, thereby recovering the selected cells from the solid surface. In some embodiments, the competition reagent is biotin or biotin analog. [0015] In some embodiments, the methods generate a selected or enriched composition containing selected or enriched CD4+ cells to CD8+ cells, or sub-populations thereof, present at a culture-initiating ratio. In some embodiments, the culture-initiating ratio of CD4+ to CD8+ cells is between at or about 10:1 and at or about 1:10, between at or about 5:1 and at or about 1:5 or is between at or about 2:1 and at or about 1:2, such as is at or about 1:1. It is within the level of a skilled artisan to choose or select a sufficient amount or a sufficient relative amount of immunoaffinity-based reagent, such as antibody-coated beads (e.g. magnetic beads) or an affinity chromatography matrix or matrices, to achieve or produce a culture-initiating ratio in the generated composition, such as culture-initiation composition, containing cells enriched or selected for CD4, CD8 or sub-populations thereof. Exemplary of such methods are described in subsections below. [0016] In some embodiments, the cells include cells of the immune system, such as lymphocytes, e.g., T cells (e.g., CD4+ and CD8+ T cells and isolated subpopulations thereof), and NK cells. In some embodiments, the cells are present in combinations of multiple cell populations or cell types, which in some aspects are included in the compositions at particular ratios or numbers of the cells or cell types. Also provided are methods for optimizing the methods, such as by selecting or determining appropriate ratios and numbers, such as culture-initiating ratios and desired output ratios and doses, of the cell types and population, for use in connection with the methods. [0017] Also provided are cells, cell populations, and compositions thereof, for use in and produced by the methods. Also provided are systems, devices, apparatuses, reagents, compounds, and kits for carrying out the methods. Also provided are therapeutic methods and uses for cells and compositions produced by the methods, such as methods for adoptive cell therapy. [0018] In some embodiments, provided are methods for producing cells for adoptive cell therapy, methods for producing cells for genetic engineering, and methods for producing genetically engineered cells. In some aspects, the cells are T cells, such as CD4.sup.+ and CD8.sup.+ T cells and/or sub-types thereof. In some aspects, the cell therapy is T cell therapy. [0019] In some embodiments, the methods are carried out by (a) isolating cell populations from a sample, and (b) incubating a culture-initiating composition in a culture vessel containing cells of the isolated populations. In some aspects, the methods further include genetically engineering the incubated cells or cells in the culture vessel, such as by (c) introducing a genetically engineered antigen receptor into cells in the culture vessel. [0020] In some embodiments, the methods are carried out by (a) incubating a culture-initiating composition in a culture vessel containing a plurality of cell populations at a particular culture-initiation ratio or particular number of cells; and (b) genetically engineering the cells, such as by introducing a genetically engineered antigen receptor into cells in the culture vessel. [0021] In some embodiments, the genetically engineered antigen receptor is introduced into cells in the culture vessel, such as to different cell types or sub-populations within the culture vessel, e.g., to CD4.sup.+ and CD8.sup.+ cells in the culture vessel. [0022] In some aspects, the methods produce an output composition for genetic engineering or adoptive cell therapy or comprising cells expressing the genetically engineered antigen receptor. [0023] In some embodiments, the isolation includes or is carried out by isolating a CD4.sup.+ primary human T cell population and/or a CD8.sup.+ primary human T cell population from the sample. In some aspects, it includes depleting or enriching for a sub-population of CD4.sup.+ cells, and/or depleting or enriching for a sub-population of CD8 cells. Thus, in some aspects, the culture-initiating composition includes isolated CD4.sup.+ and CD8.sup.+ primary human T cells. [0024] In some aspects, the enriching or depleting is carried out by immunoaffinity-based selection, such as binding to antibodies or other binding molecules recognizing surface markers on the cells. In some aspects, the antibody or other molecule is coupled to a magnetically responsive or magnetic particle, e.g., bead. In some aspects, the selection includes positive and/or negative selection steps. [0025] In some embodiments, the isolation of the CD8.sup.+ primary human T cell population comprises depleting or enriching for a sub-population of CD8.sup.+ cells. In some embodiments, the isolation of the CD4.sup.+ primary human T cell population comprises depleting or enriching for a sub-population of CD4.sup.+ cells. In some aspects, the isolation of a T cell population comprises enriching for T.sub.CM cells. In some aspects, the isolation of the CD8.sup.+ and/or the CD4.sup.+ primary human T cell population comprises enriching for central memory T (T.sub.CM) cells. In some aspects, the enrichment for central memory T (T.sub.CM) cells comprises negative selection for cells expressing a surface marker present on naïve T cells, such as CD45RA, or positive selection for cells expressing a surface marker present on central memory T cells and not present on naïve T cells, such as CD45RO; and/or positive selection for cells expressing surface marker present on central memory T (T.sub.CM) cells and not present on another memory T cell sub-population, such as CD62L, CCR7, CD27, CD127, and/or CD44. [0026] In some embodiments, the isolation includes (i) subjecting the sample to positive selection based on surface expression of CD4, resulting in a positive and first negative fraction, where the positive fraction is the isolated CD4.sup.+ population; and (ii) subjecting the first negative fraction to negative selection based on surface expression of a non-T cell marker and a surface marker present on naïve T cells, thereby generating a second negative fraction; and (iii) subjecting the second negative fraction to positive selection based on surface expression of a marker present on the surface of central memory T (T.sub.CM) cells and not present on the surface of another memory T cell sub-population. [0027] In some aspects, the marker present on naïve T cells includes CD45RA. In some aspects, the surface marker present on central memory T (T.sub.CM) cells and not present on another memory T cell sub-population includes CD62L, CCR7, CD27, CD127, and/or CD44. [0028] In some aspects, the isolation or selections are carried out in the same separation vessel. In some aspects, the isolation comprises (i) subjecting the sample to a first selection, thereby generating one of the CD4.sup.+ and CD8.sup.+ primary human T cell populations and a non-selected sample; and (ii) subjecting the non-selected sample to a second selection, thereby generating the other of the CD4.sup.+ and CD8.sup.+ primary human T cell populations. In some aspects, the CD4.sup.+ primary human T cell population is generated in the first selection and the CD8.sup.+ primary human T cell population is generated in the second selection. In some aspects, the first and/or second selection comprises a plurality of positive or negative selection steps. [0029] In some aspects, the isolation of one or more of the populations, such as the primary human T cell population, the primary human CD4+ T cell population, or the primary human CD830 T cell population, includes positive selection based on surface expression CD62L, CCR7, CD44, or CD27. In some aspects, the isolation of one or more of the populations, such as the primary human T cell population, the primary human CD4.sup.+ T cell population, or the primary human CD8.sup.+ T cell population, includes negative selection based on surface expression of CD45RA or positive selection based on surface expression of CD45RO. [0030] In some embodiments, the various isolations, such as isolation of the plurality of cell populations, e.g., the CD4.sup.+ and the CD8.sup.+ populations, are carried out in the same separation vessel. In some aspects, the separation vessel is or includes a tube, tubing set, chamber, unit, well, culture vessel, bag, and/or column. In some aspects, the separation vessel maintains the cells in a contained or sterile environment during the separation. [0031] In some embodiments, the incubating is carried out under stimulating conditions. In some aspects, the culture-initiating composition comprises the CD4.sup.+ and CD8.sup.+ primary human T cell populations at a culture-initiating ratio. In some aspects, the culture-initiating ratio is designed to yield a desired output ratio of CD4.sup.+ to CD8.sup.+ cells (or desired total number of T cells or number(s) of the sub-population(s)) following said incubation, or at some later time, such as following engineering, cryopreservation, or at the time just prior to administration, such as at thaw at bedside. [0032] In some embodiments, the desired output ratio is between at or about 5:1 and at or about 1:5 (or greater than about 1:5 and less than about 5:1), such as between at or about 1:3 and at or about 3:1 (or greater than about 1:3 and less than about 3:1), such as between at or about 2:1 and at or about 1:5 (or greater than about 1:5 and less than about 2:1), or is the range of between at or about 2:1 and at or about 1:5. In some aspects, the desired output ratio is at or about 3:1, 2.9:1, 2.8:1, 2.7:1, 2.6:1, 2.5:1, 2.4:1, 2.3:1, 2.2:1, 2.1:1, 2:1, 1.9:1, 1.8:1, 1.7:1, 1.6:1, 1.5:1, 1.4:1, 1.3:1, 1.2:1, 1.1:1, 1:1, 1:1.1, 1:1.2, 1:1.3, 1:1.4, 1:1.5, 1:1.6, 1:1.7, 1:1.8, 1:1.9: 1:2, 1:2.5, 1:3, 1:3.5, 1:4, 1:4.5, or 1:5. [0033] In some aspects, the method results in a ratio of two different cell types or populations, such as a ratio of CD4.sup.+ to CD8.sup.+ cells, in the output composition that is between at or about 5:1 and at or about 1:5 (or greater than about 1:5 and less than about 5:1), such as between at or about 1:3 and at or about 3:1 (or greater than about 1:3 and less than about 3:1), such as between at or about 2:1 and at or about 1:5 (or greater than about 1:5 and less than about 2:1), or that is at or about 3:1, 2.9:1, 2.8:1, 2.7:1, 2.6:1, 2.5:1, 2.4:1, 2.3:1, 2.2:1, 2.1:1, 2:1, 1.9:1, 1.8:1, 1.7:1, 1.6:1, 1.5:1, 1.4:1, 1.3:1, 1.2:1, 1.1:1, 1:1, 1:1.1, 1:1.2, 1:1.3, 1:1.4, 1:1.5, 1:1.6, 1:1.7, 1:1.8, 1:1.9: 1:2, 1:2.5, 1:3, 1:3.5, 1:4, 1:4.5, or 1:5. [0034] In some aspects, the desired output ratio is 1:1 or is about 1:1. [0035] In some aspects, the methods result in the desired output ratio or cell number(s) in the output composition, results in a ratio or number in the output composition that is within a certain tolerated difference or range of error of such a desired output ratio or number, and/or results in such a ratio or number a certain percentage of the time that the method is performed, such as at least at or about 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95%, or more than 95% of the time. [0036] In some aspects, the tolerated difference is within about 1%, about 2%, about 3%, about 4% about 5%, about 10%, about 15%, about 20%, about 25%, about 30%, about 35%, about 40%, about 45%, about 50% of the desired ratio. In some aspects, the output ratio is within 20% of the desired ratio and/or is within that ratio at least 80% of the time the methods are performed. [0037] In some embodiments, the tolerated difference and/or the desired output ratio or number(s) is or has been determined by administering different cell types, such as administering CD4.sup.+ and CD8.sup.+ cells, to one or more subjects at a plurality of test ratios or numbers, and assessing one or more parameters. In some aspects, the determination of the desired output ratio or number or tolerated difference includes assessing one or more outcomes following administration to the subject. In some aspects, the outcomes include those selected from among amelioration of a disease symptom and outcomes indicating safety and/or low or absence of toxicity. [0038] In some embodiments, the culture-initiation ratio is selected based on a proliferation rate or survival capacity of various cell types isolated, such as the CD4.sup.+ and/or CD8.sup.+ primary human T cell population. In some embodiments, the culture-initiating ratio is selected based on a source of the sample, such as the subject from which the sample has been derived. For example, in some aspects, the sample is derived from a subject and the culture-initiating ratio is selected based on a disease or condition affecting said subject and/or a treatment the subject is receiving, has received, or will receive, such as a co-treatment for administration with the adoptive cell therapy. In some aspects, the culture-initiating ratio is selected based on a phenotype of one or more of the cells or sub-types of cells being isolated or cultured, such as a phenotype of the CD4+ and/or CD830 cell populations, such as expression of a cell surface marker or synthesis or secretion of one or more factors, such as cytokines or chemokines. [0039] In some embodiments, the methods comprise selecting the culture-initiation ratio prior to the incubation step. In some aspects, the selection is carried out by measuring a proliferation rate or survival capacity of one or more of the isolated cell populations or populations of cells being incubated, such as the CD4.sup.+ primary human T cells and/or the isolated CD8.sup.+ primary human T cells. In some aspects, the selection is carried out by assessing a phenotype of the isolated CD4.sup.+ primary human T cells and/or the isolated CD8.sup.+ primary human T cells. In some aspects, the phenotype selected from among expression of a surface marker and secretion of a cytokine or other factor. In some aspects, the selecting is carried out by assessing the source of the sample, such as where the culture-initiation ratio is selected based on a disease or condition affecting a subject from which the sample is derived. [0040] In some embodiments, the methods further include determining an intermediate ratio or number of cells, such as an intermediate ratio of CD4.sup.+ to CD8.sup.+ cells, present in the culture vessel at a time point subsequent to the initiation of said incubation. In some aspects, the methods further include adjusting one or more parameters and/or or increasing or decreasing the time for carrying out the incubation and/or engineering steps, based on said intermediate ratio. In one aspect, the adjusting comprises increasing or decreasing the number of or enriching for one or more cell populations in the culture vessel, such as increasing or enriching for CD4.sup.+ or CD8.sup.+ cells in the culture vessel, adjusting temperature, adding a stimulant to the culture vessel, adjusting the concentration of one or more stimulants in the culture vessel, and/or adding and/or removing a sub-population of cells to or from the culture vessel. In some aspects, the determining and/or adjusting are carried out while maintaining the composition being incubated within a sterile or contained environment. In some aspects, the determination and/or adjusting are carried out in an automated fashion, such as controlled by a computer attached to a device in which the steps are performed. [0041] In some aspects, the isolating, incubating, and/or engineering steps are carried out in a sterile or contained environment and/or in an automated fashion, such as controlled by a computer attached to a device in which the steps are performed. [0042] In some aspects, the CD8.sup.+ population in the culture-initiating composition comprises at least 50% central memory T (T.sub.CM) cells or comprises less than 20% naïve T (T.sub.N) cells. [0043] In some embodiments, the sample is obtained from a subject. In some aspects, the subject is a subject to whom said genetically engineered cells, e.g., T cells, or cells for adoptive cell therapy will be administered or subject in need of such administration. In other aspects, the subject is a subject other than a subject to whom said genetically engineered cells, e.g., T cells, or cells for adoptive therapy will be administered or is a subject not in need of such therapy. Among the samples are blood and blood-derived samples, such as white blood cell samples, apheresis samples, leukapheresis samples, peripheral blood mononuclear cell (PBMC) samples, and whole blood. [0044] In some aspects, the stimulating conditions for the incubation or engineering include conditions whereby T cells of the culture-initiating composition proliferate or expand. For example, in some aspects, the incubation is carried out in the presence of an agent capable of activating one or more intracellular signaling domains of one or more components of a TCR complex, such as a CD3 zeta chain, or capable of activating signaling through such a complex or component. In some aspects, the incubation is carried out in the presence of an anti-CD3 antibody, and anti-CD28 antibody, anti-4-1BB antibody, for example, such antibodies coupled to or present on the surface of a solid support, such as a bead, and/or a cytokine, such as IL-2, IL-15, IL-7, and/or IL-21. [0045] In some embodiments, the genetically engineered antigen receptor is or includes a T cell receptor (TCR), such as a high-affinity TCR, or functional non-TCR antigen receptor, such as a chimeric antigen receptor (CAR). In some aspects, the receptor specifically binds to an antigen expressed by cells of a disease or condition to be treated. In some aspects, the CAR contains an extracellular antigen-recognition domain. In some aspects, it further contains an intracellular signaling domain comprising an ITAM-containing sequence and an intracellular signaling domain of a T cell costimulatory molecule. [0046] Also provided are cells and compositions, including pharmaceutical compositions, produced by any of the methods or embodiments, including genetically engineered cells and cells for adoptive cell therapy. Also provided are methods for administering such cells and compositions to subjects and uses of the cells and compositions in such methods. For example, provided are methods of treatment carried out by producing cells according to the cell production methods and administering cells of the output composition or a composition derived therefrom to a subject. Provided are methods of treatment including administering the provided cells or compositions to a subject. In some aspects, the sample from which the cells are isolated is derived from the subject to which the cells are administered. In some aspects, the sample is from a different subject. Thus, the methods include autologous and allogeneic methods. In some embodiments, the methods ameliorate, treat, or prevent one or more symptoms of a disease or condition in the subject. In some aspects, the disease or condition is a cancer or associated symptom. In some embodiments, the cancers include leukemia, lymphoma, e.g., chronic lymphocytic leukemia (CLL), ALL, non-Hodgkin's lymphoma, acute myeloid leukemia, multiple myeloma, refractory follicular lymphoma, mantle cell lymphoma, indolent B cell lymphoma, B cell malignancies, cancers of the colon, lung, liver, breast, prostate, ovarian, skin (including melanoma), bone, and brain cancer, ovarian cancer, epithelial cancers, renal cell carcinoma, pancreatic adenocarcinoma, Hodgkin lymphoma, cervical carcinoma, colorectal cancer, glioblastoma, neuroblastoma, Ewing sarcoma, medulloblastoma, osteosarcoma, synovial sarcoma, and/or mesothelioma. |
![]() ![]() ![]() ![]() |
return to message board, top of board |